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Der Approximationsfehler von (20) ldsst sich in den
nicht streng 16sbaren Fillen an graphisch ermittelten
Ellipsenwerten testen (Tabellen 2 und 3). Demnach
liegt fiir das Achsenverhiltnis b/a=1,8 und fiir Ab-
sorptionswerte uR<1,8 der Fehler unter +29%,. Der
Febler nimmt sicher ab fiir /e — 1. Die gegebene
Abschitzung ist auch fiir dreiachsige Ellipsoide giiltig,
wobei anstelle von b/a jeweils das grosste Achsen-
verhéltnis tritt.

Fir uR>1,8 kann der Approximationsfehler zu-
nehmen. Bis uR=2,5 zeigt sich jedoch noch kein
indikativer Fehler, wie probeweise durchgefiihrte
Extrapolationen der Tabellen 2 und 3 zeigen (Ge-
nauigkeit +3%). Da bei hohen wR fiir kreisnahe
Achsenverhialtnisse die Approximation zunehmend
besser wird, ist es wahrscheinlich, dass auch fiir den
mittleren Absorptionsbereich mit (20) brauchbare
Werte entstehen. Der Beweis steht jedoch aus. Fiir
alle uR hat man aber immer wieder Strahlenginge
v,=vp, die in allen Fillen genaue Werte und damit
sichere Tabellenstiitzpunkte liefern. In dem unter-
suchten Bereich wird die Ndherung (20) auch hohen
Genauigkeitsanspriichen gerecht und erméglicht es
jetzt solche Kristalle eingehender zu untersuchen, bei
denen es bisher nicht gelang einfachere Schleifkorper
zu erhalten. In der Praxis werden die Messung der
Achsenverhéaltnisse und die Bestimmung der Position
des Ellipsoids zur Drehachse und zum Primirstrahl
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oft, grossere Fehlerquellen darstellen, als die Niherung
(20). Schliesslich ist bei photographischen Auswerte-
methoden zu beachten, dass in allen Fillen, in denen
die Drehachse des Kristalls keine Rotationssymmetrie-
achse ist, die Interferenzpunkte auch bei gleichem 6
unterschiedliche Form haben.

Die erhebliche Anzahl an Ellipsoidparametern be-
reitet einer sinnvollen allgemeinen Tabellierung be-
trichtliche Schwierigkeiten. Die hier gegebene Zu-
riickfilhrung auf die Kugel bzw. den Kreis diirfte
daher von Interesse sein. In wenigen Stunden kann
fiir ein gegebenes Problem eine vollstindige Tabelle
ohne besondere Rechenhilfsmittel aufgestellt werden.

Herrn Prof. Dr. R. Kern (Nancy) danke ich herzlich
fir Hinweise und fiir die Durchsicht eines Teils des
Manuskriptes.
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On the Regularity of the Tetrahedra in Quartz

By Gorpox S. SmiTH
Mellon Institute, Pittsburgh 13, Pennsylvania, U.S.A.

(Received 20 August 1962)

By an analysis based on symmestry considerations it is possible to specify the conditions under which
the Si0, tetrahedra in quartz can be strictly regular. For such a configuration the Si—-O bond distance
in a-quartz must be ()/(3)a —c)/2, and ¢/a must be < (3/2)()/(8) —1); in B-quartz the axial ratio must
be (3/2)()/(3) —1). Comparison of these quantities with published lattice constants shows quite
clearly that in the vicinity of room temperature regular SiO, tetrahedra are not possible in «-quartz,
nor are they possible in f-quartz. Hence, the small deviations from regularity reported in two recent

refinements of «-quartz must be regarded as real.

Introduction

On the basis of early structural studies, it has been
customary to assume that in quartz as well as in the
other pure silica phases the SiO4 tetrahedra are strictly
regular; that any of the small deviations from regular-
ity were simply the result of experimental errors in
the diffraction data. Two recent refinements on
x-quartz (Young & Post, 1962; Smith & Alexander,
1963) (hereafter designated YP and SA respectively)
have yielded bond data which, however, are not
entirely clear-cut in this regard; some of the bond

data in Table 1 are consistent with the regular con-
figuration, whereas for others the deviations from
regularity are large enough to be statistically sig-
nificant. Because of the importance of quartz in
relation to the stereochemistry of the silicates, it is
therefore of considerable interest to establish un-
ambiguously whether or not the tetrahedra are to be
considered regular within experimental error.

We shall show by an analytical approach that the
existence of regular tetrahedra in quartz introduces
relationships between the size of the tetrahedra and
the unit cell dimensions, and that from the temper-
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ature dependence of the latter using the results of
Jay (1933) some very definite conclusions can be
drawn concerning the regularity of the tetrahedra at
a number of temperatures.

Formulation of the constraint conditions

Fig. 1 shows the arrangement of a portion of the
tetrahedra in x-quartz relative to both a right-handed
primitive trigonal unit cell and to a right-handed
centered orthogonal cell whose B axis coincides with
the negative direction of a of the trigonal cell, and,
by the convention of Wyckoff (1948), with a erystallo-

By -m-mm—mmmm=mmm=mosmommo—ooomo oo |

e —

A=a+2b
B=-a
C=c

|A[-V3 |a]
[Bl=|a|
[Cl=[c]

Fig. 1. The atomic arrangement in x-quartz seen in projec-
tion down the ¢-axis with the relationship between the trigonal
and orthogonal unit cells also shown. The oxygen tetrahedra
are outlined with solid lines.

graphic two-fold axis. The trigonal cell contains one
independent O in a general six-fold position and one
Si in a three-fold special position on the two-fold axis;
the space group is P3:21. The atoms O, O’ and Si
of Fig.1 have the following fractional coordinates,
(=14zx,9,2), @ x—y, 3+2—1) and (—1+%,0,0)
respectively along the trigonal axes, and the coor-
dinates, (y/2, 1 —2+y/2, 2), (}(z—y), Hz+y), §+2—-1)
and (0, 1—wu,0) respectively along the orthogonal
axes.*

With the change of variables: X=3}x—y), Y=
Hx+y), Z=%+2z—1 and U=1-u, the coordinates
(in A units) become

0 (3A(Y-X) B(1—-}(Y+3X)) C(Z+13)
0 (4X BY 07)
Si (0 BU 0). (1)

If this tetrahedron of oxygens is strictly regular,
the two-fold axis through Si (along a or B) must

—_— !
* The coordinate transformation is Xorthog. = R Xirig.

—_—
where R-! is the matrix (0, 3, 0/—1, 4, 0/0, 0, 1).
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become a 4 axis of symmetry for the SiOs group,
and the angle O-Si-O’ must be equal to cos~1(—1}).
O would be related to O’ by a clockwise rotation
(looking along the positive direction of B) of the
4 axis followed by inversion through the point
(0, BU, 0), (the reader is asked to bear in mind
that Z<O0). The coordinates (in A units) for O

resulting from this operation are
(-CZ,BRU-Y), AX). (2)

If the tetrahedron is to have 4 symmetry, these
coordinates must be the same as those generated by
the space group symmetry, or

—CZ=34(Y-X) (3)
B@RU—Y)=B(1—}¥ +3X)) (4)
AX=C(Z+1), (5)

and if the tetrahedron be regular,
B(U—Y)=d cos (£ 0-Si-0'/2) =d[y3, (6)

where
d=Si-0 bond distance=(42X2+ B2(U — Y)2+C222)%.
Subtracting (3) from (5) we obtain

X+ Y=20/(34)=2¢/(3)/(3)a)=x . (7}
From (4) and (6) and making use of (7), we get
d=(A4-0)/2, (8)

and the solution of (5) and
AzX2 4 C2Z2=d? sin2 (£ 0-Si-0'/2)=2d?/3
for X yields
24X =(C/3) £ ((4d%/3)— (C?9))*. (9)

From (8) we see that a solution to the system of
linear equations set forth by equations (3) through (6)
is only possible for prescribed values of the Si-O
bond distance; for any other values the system of
equations is mathematically inconsistent. At the same
time, equation (9) requires

&> 0212 or d = ()3/6)c. (10)

Perhaps it is not surprising to encounter such restric-
tions on the bond distance since the coordinates
required by the space group are generated by a
three-fold screw axis, an operation which is not a
symmetry element of a tetrahedron. Equations (8)
and (10) therefore represent the constraints imposed
on the size of the tetrahedron and the coordinate
system (i.e. the unit cell dimensions) such that the
coordinates generated by such divergent symmetry
elements can be made identical.*

* Any lack of conformity with the constraint conditions
is clearly attributable to irregularities in the tetrahedra since
there exists ample evidence for the space group, P3,21
(or its enantiomorph, P3,21).
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The analysis of the situation in f-quartz is con-
siderably simpler because of the higher site symmetry
for Si. In terms of the space group P6222, silicons
occupy the 3¢ positions of 222 symmetry; oxygens
are in the 6/ positions with x=0-197 (Wyckoff, 1948).
The atoms in f-quartz corresponding to O, O’ and Si
of Fig.1 have the respective fractional coordinates
(—1+2z, 2, %), (—z, z, —%) and (—1, 0, 0) relative to
hexagonal axes. Transformation of these positions

— . . .
according to R-1 yields the following coordinates in A

0 (A(=/2), B(1-3z/2), (]6)
0" (A(z/2),  B(3x/2), —-C/6)
Si (0, BJ2, 0). (11)

In f-quartz the three 4 axes of the hypothetical
tetrahedron are either coincident with or parallel to
axes of the orthogonal cell.

From the 4 axis coincident with B, we require

A(z/2)=C|6 or x=C[(34). (12)
From the 4 axis parallel to C we require

A(x/2)=(B[2)—B(3z/2) or
z=1/(3+3)=0-2113. (13)

Equations (12) and (13) can be combined to read

cla=%(y3—1)=1-0981. (14)

Thus in order to have regular tetrahedra in §-quartz
the axial ratio and the one variable positional param-
eter are required to be fixed numbers, independent
of temperature. From (12) and (13) it is also evident
that the Si—O bond distance for the atoms in (11) is
required to be equal to }/(3)c/6. Similarly, (8) and (10)
can be combined to yield the relation

c/a, < %(VS_]-) s

for the axial ratio in x-quartz. It follows then that the
axial ratio in a-quartz should be less than or equal
to the axial ratio in §-quartz, if regular SiO4 tetrahedra
are present.

(15)

Results

Numerical values for equations (8) and (10) together
with values for the c/a ratio at various temperatures
are given in Table 2; lattice constants reported
originally in kX units by Jay (1933) have been
multiplied by 1-00202 to effect the conversion to

ON THE REGULARITY OF THE TETRAHEDRA IN QUARTZ

Table 1. Interatomic distances and bond angles
1n x-quartz at room temperatures

Si-0 / Si—0-8i
SA 1:617A 1597 A 144-0°
YP 1-611 1-603 1439
0---0 / 0-Si-0
SA 2640 A 2637 A 110-3° 109-5°
2-614 2-604 109-2 108-8
YP 2641 A  2635A 110-1° 110-0°
2-613 2-613 109-2 108-7

Ave. e.s.d.’s from both studies: Si—O, 0-0034; O--- O,
0-00¢ A; s/ Si-0-8i, 0-2°; / 0-8i-0, 0-2°.

A units. Jay’s estimates of errors are: ¢, one part in
30,000; digo, one part in 40,000; and c/a, one part in
20,000.

Reference to Table 2 shows that numerically the
c¢/a ratio in quartz decreases steadily with increasing
temperature and that this ratio is always higher in
the x-phase than in the g-phase. Indeed from at least
18 to ~ 280 °C, the axial ratio actually exceeds the
maximum value permitted by (15), and so in this
temperature range (of perhaps greatest interest) we
can at once conclude that the lattice constants alone
are inconsistent with there being regular tetrahedra
in «-quartz, due consideration being given to the
experimental errors. At ~ 280 °C when the equal sign
in (15) is applicable, regular tetrahedra nominally
become possible. However, in such a case, the frac-
tional coordinates as given by equations (9), (7), (6)
and (5) become (X, 3X, —}) for O’ with X=C/64
and (0, %,0) for Si, parameters which are identical
with those demanded by the (hexagonal) S-quartz
structure (see equation (11)). Thus if there were regular
tetrahedra, the o — f transformation would occur at
~ 280 °C instead of at ~ 580 °C as is actually the
case. (Strictly speaking then, only the inequality signs
in (10) and (15) prevail in the x-phase; we henceforth
reserve the equality signs for the §-phase.)

We can use the magnitudes of the Si-O bond
distances required by a regular tetrahedron in x-quartz
to infer against such a configuration in the temperature
range above 280 °C. In Table 2 all of the requisite
bond distances are shorter, and significantly so, than
any of the experimental distances in Table 1 obtained
at room temperature. To put the position succinctly :
the Si—O bond distance would have had to decrease
with temperature, and then when a regular tetrahedron
became established, increase with temperature in

Table 2. Numerical results

°C cla d=(3%a—c)/2 d >3%¢/6

18 1-1000 1-5525 A 1-5601 A
118 1-0994 1-5564 1-5615
203 1-0987 1-5602 1-5628
280 1-0980 1-5644 1-5640
366 1-0972 1:5690 1-5657
418 1-0965 1-5727 1-5667
494 1-0957 15782 1:5690

°C cla (3%a—c)/2 3%c/6
525 1-0952 1-5812 1-5700 A
567 1:0940 1-5881 1-5723
579 1-0923
590 1-0921
610 1-0921 B-quartz*

665 1-0919 .

730 1-0919

* Jay gives the x—f transformation temperature as 579 °C, and considers this within experimental error of the acknowledged

temperature 575 °C.
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accordance with the values in Table 2. Lastly, the
observed axial ratios in f-quartz, while largely in-
dependent of temperature, deviate some 100¢ from
the required value of 1-0981; we can thus rule out the
possibility of regular tetrahedra in f-quartz as well.

A further point can be answered by the present
analysis. Equation (7), we note, is obtained under the
condition that the tetrahedron has 4 symmetry, not
necessarily the full symmetry of a regular tetrahedron
(since (6) is not used in obtaining (7)). Accordingly,
the x parameter of the independent oxygen is required
to be 2C/A4, numerically 0-4234 at 25 °C using a=
4-9032 kX, ¢=5-3937 kX (Lipson & Wilson, 1941).
The experimental values of « are 0-4152 + 0-0007 (YP)
and 0-4145 +0-0008 (SA). Since 0:4234 minus either
0-4152 or 0-4145 is ~ 100, the experimental results at
room temperature are therefore indicative of a (stati-
stically) significant distortion from even 4 symmetry.

There are several other substances to which the
present analysis can be directly applied. One poly-
morph of GeO; is found to have the x-quartz-type
structure (Zachariasen, 1928). The GeOs; tetrahedra
cannot, however, be regular as the constraint con-
ditions, (8) and (10), yield respectively d=1-498 A
and d>1630 A using a=4-987 A and ¢=5652 A
at 26 °C (Swanson & Tatge, 1953). On the other hand,
the possibility of regular tetrahedra in BeF: is
decidedly more favorable. Roy, Roy & Osborn (1953)
report a transition temperature of 220 °C between
« and B-quartz-like forms. From their graph of the
temperature dependence of @ and ¢ we read c/a=
5-16/472=1-093 at 25 °C and a constant value of
¢/a=5-24/4-77=1-099 in the f-phase. Hyde, O’Connor
& Wait (1958) likewise report an axial ratio of 1-092
at 25 °C in the quartz form of BeFs, so that the error
in the above ratios may be as low as +0-001. The
prescribed Be-F bond distances would be 1-50s A
in the a-form at 25 °C and 1-515 A in the B-form.

Discussion

Although the analysis is derived expressly for the
situation in quartz, it is important to stress that only
one general principle is involved; we have simply
investigated the conditions whereby two symmetry
operations, one required of an assumed molecular
configuration and the other required by the space
group, can be geometrically congruent. In doing so,
it has not been necessary to postulate the atoms
(or ions) as non-deformable and non-interpenetrating
spheres packed according to some prescribed rule.
Quite possibly, a similar analysis could be used to
establish ratios and bond distances for other systems
where differing atomic sizes and/or definite directional
bonding can safely be assumed.

We observe that in quartz this analytical approach
has considerable sensitivity in detecting small devia-
tions from an ideal symmetry. Whereas the experimen-
tal bond data only conditionally* point to some degree

* The proper statistical approach in this case would be
to subject the bond data to a generalized analysis which
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of irregularity in the SiOs tetrahedra, the present
analysis shows that at room temperature the bond
distance required of a regular SiO; tetrahedron is
numerically 1-55 A, some 0-06 A (or ~ 20¢) shorter
than the average experimental value. Furthermore,
when accurate lattice constants were available, we
have already seen that in some cases we did not even
need to compare the experimental and required bond
distances; the values of the observed lattice constants
alone were sufficient to rule out the possibility of a
regular tetrahedron. From this it would seem that
small deviations distributed among the several
equivalent tetrahedra within the unit cell produced
a concomitantly large effect on the lattice constants.

Conclusions concerning x-quartz

We have the results then that at room temperature
the SiO4 tetrahedron in «-quartz is neither regular
nor does it have even 4 symmetry ; nothing, however,
in the present analysis excludes the possibility of equal
Si—O bond distances. Nevertheless, in the absence of
the higher site symmetry for the SiOs group, it is
perhaps only appropriate to take the bond data of
Table 1 strictly at face value. We can thus consider
the independent Si—O bond distances of 1-597 + 0-003 A
and 1:617 +0-003 A reported by SA as significantly
different from an average value of 1-607 A. Although
the bond distances found by YP deviate less pronounc-
edly, we suggest that «-quartz at 25 °C be considered
to have two different types of Si—O bond lengths,
one 1:600+0-003 A and the other 1-614+0:003 A,
the mean values from the two refinements.

The author wishes to thank Dr Leroy E. Alexander
for his kind interest and helpful advice during the
present investigation.
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